
Tammy Dahlgren
with

Tom Epperly, Scott Kohn, and Gary Kumfert
Center for Applied Scientific Computing

Common Component Architecture Working Group
October 3, 2002

Introducing

Design by Contract to SIDL/Babel

This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

UCRL-PRES -150101

TLD 2CASC

Overview

l Goals
l Basic Constructs
l Impact on SIDL/Babel
l Benefits for the CCA
l Future Work

TLD 3CASC

Why support assertions at the interface
specification level?

The interface specification can provide a simple,
concise description of the requirements, behavior,

and constraints.

Generated code will automatically ensure
compliance regardless of the underlying

implementation language.

TLD 4CASC

The SIDL grammar defines packages,
interfaces, etc.

l Packages & Versions
l Interfaces & Classes
l Inheritance Model
l Methods
l Method Modifiers
l Intrinsic Data Types
l Parameter Modes
l And more…

Optional
assertion
specifications
added here

TLD 5CASC

There are several types of assertions
mentioned in the literature.

l An integer value that must be non-negative prior
to first execution of a loop and decreased by
every iteration to guarantee loop termination

Loop Variant

l Instance properties that must be true prior to
the first execution of a loop and preserved by
every iteration so hold on loop termination

Loop Invariant

l Global properties of instances that must be true
upon instance creation and preserved by all
routines before and after every invocation

Class
Invariant

l Guarantees of proper method function
l Conditions that must be true after invocation

Postcondition

l Constraints to enable proper method function
l Conditions that must be true prior to invocation

Precondition
Express…Type

TLD 6CASC

Only the first two Design by Contract
clauses will be added at this time.

l Specify library’s guarantees
l Obligations on callee to provided
preconditions were satisfied and no
exceptions raised

Postconditions

l Specify library’s requirements
l Obligations on callers

Preconditions
CommentClause

Method sequencing will be implemented using a sequence, or state , clause the
values of which can be utilized in the pre- and post-conditions to specify method
ordering.

TLD 7CASC

The new clauses require a number of
additions to the SIDL grammar.

l Eiffel keywords
—Preconditions requires
—Postconditions ensures

l Simple conditional expression operators
—Logical &&, ||, !
—Bitwise Logical &, ^, |
—Relational <, <=, ==, !=, >=, >
—Shift <<, >>
—Additive +, -
—Multiplicative *, /, %

l Logical grouping ()

l Literal keywords TRUE, FALSE, NULL, return

l Terminals

TLD 8CASC

The following specification snippet
illustrates the use of both clauses in SIDL.

interface Vector {
Vector axpy (in Vector a, in Vector x) {

requires a != NULL;
x != NULL;

ensures return != NULL;
};
double norm () {

ensures return >= 0.0;
};

Vector.sidl

Recall: If method raises an exception then no guarantee the ensures will be met!

TLD 9CASC

If method sequencing were incorporated,
call ordering state would be added.

interface Vector {
state { uninitialized, initialized };

void setData (in double data){
requires uninitialized;

ensures initialized;

};

…

VectorWithOrdering.sidl

Note: Sequencing constructs subject to change.

First item is the initial state.

Transition to initialized
is automatic if library
call is successful and all
(other) postcondition
entries met.

TLD 10CASC

Methods that require the instance to be in
a state could annotate it accordingly.

interface Vector {
…
Vector axpy (in Vector a, in Vector x) {

requires initialized;
a != NULL;
x != NULL;

ensures return != NULL;
};
double norm () {

requires initialized;
ensures return >= 0.0;

};

VectorWithOrdering.sidl
Note: Sequencing constructs subject to change.

TLD 11CASC

Babel takes a SIDL file and will generate
expanded glue code.

Application

Impls

Stubs

Skels

IORs

SIDL
interface

description

Enforcement code
added here.

TLD 12CASC

The IOR files will be changed to add the
generated checks.

Vector.sidl

foo.f

Vector_IOR.c

Vector_IOR.h
Vector_fSkel.c

Vector.fif

Vector_Impl.f

Vector_fStub.c

TLD 13CASC

There will be three execution paths
available through the IOR.

Call

Preconditions

Preconditions

Postconditions

ReturnLibrary
method

1

2

3

TLD 14CASC

Dynamic switching between paths can be
available at up to four levels.

l Instance
—Vector.__create(/* desired setting */);
—Vector.__noChecks(); // Path #1
—Vector.__checkRequires(); // Path #2
—Vector.__checkAsserts(); // Path #3

l Class -- For all instances of a class
l Package -- For a subset of packages
l Global -- Through the SIDL Loader

What degree of flexibility is needed?
- Dynamic switching at the Class level? Package level? Loader level?
- Regular expression support for specifying classes? Packages?

TLD 15CASC

Violations of assertions will result in the
raising of new SIDL exceptions.

getNote(): string
setNote(string)
getTrace():string
add[Line](string)
add(string, int, string)

BaseException

RequiresViolation EnsuresViolation

One or more requires
conditions failed!

One or more ensures
conditions failed!

TLD 16CASC

Which means several parser-related files
must change in the compiler.

New file(s) associated with the assertion
list productions to support the lists.

symbols/
newclass(es).java

Add support for assertion lists.symbols/
Method.java

Add parsing for new structures from
XML.

parsers/xml/
ParseSymbolXML.java

Add support for the new grammar
productions.

parsers/sidl/
SIDL.jj

Add elements for the assertion lists and
conditions.

dtds/
SIDL.dtd

Change(s)File

TLD 17CASC

The backends must also be modified to
support the IOR and stub changes.

Add support for new built-in
methods for dynamic
switching.

backend/language/StubHeader.java*
backend/language/StubSource.java*

Add support for new built-in
methods for dynamic
switching and the new entry
point vectors.

backend/IOR.java
backend/IOR/IORHeader.java
backend/IOR/IORSource.java

Change(s)Files

* These or their equivalent are generally present for each supported language.

TLD 18CASC

Interface-level assertions will ultimately
facilitate wider reuse of CCA Components!

For Domain Scientists,
components will be:
+ well-debugged
+ well-documented
+ easier to use

For Library developers :
+ requirements explicit
+ constraints explicit
+ sequencing explicit
+ automatic enforcement
+ enhanced debugging

TLD 19CASC

Future work focuses on adding and
exploring more features.

l Add support for specifying and enforcing method
sequencing

l Explore annotations and mechanisms for:
—Enabling the use of a method within assertions

(e.g., const or immutable)
—Checking features of an instance

(e.g., comparing sizes of two matrices or vectors)
— Integrating and checking relevant domain-specific

properties (e.g., standard units, types of matrices)
– Automated determination of compatibility

– Generation and automated use of translation routines

l Anything else?

